STRFUE ooty o QIAMACCD [- KARVATAKA STATE OPEN INIVERSITY
HA Manasagangotrl Mysore - 570 006

swstnonees, dzdm& - 570 006 %,'m, .

M.Sc. Computer Science
Second Semester

Course: 3

Module:1-6
MSCS-508

COR DEOTN O UTERYRL, BHYTE) dgronsd, B0 BITE
S0g ITARPOeH FIJob, STERITRNT.

ca%cob aira NeS 1986

The Open University System has been initiated in order to augment

opportunities for higher education and as instrument of democrating education.
National Educational Policy 1986

ag =Sk nodes

T30 Wy IERSe - DITRTI, BYodNT] TP VT, WY
BRIT'ITN SRRDIR. DY T, VITRIT'ITN BRBDPTE QWO
TIF JemoneIe.

DL D3I, ag DG, RNJpeFTOD, xmgcm, VROFZH B TOWIOZ, B,
BOOOT B AEIPNIETNG. ©WOTT, IR B, LW & DI B DI WY
DB DI, 8 TP B IP ¥Q ; ‘D% 3. 3 m%d NTOH TPZFY; NBJFT
ASFATT BoH. TOZT DTVDTN ART BRDPYTY; BT ODRRRHT.
ToBW IT 08T [y WQ; FPSF TTRPRFE A0W PITR VY; YW,
PAST T RA0W0T TOENT TREF T

BIoD

Gospel of Universal Man

Every Child, at birth, is the universal man. But, as it grows, we trun it into “a petty
man”. It should be the function of education to turn it again into the enlightened “univer-
sal man”.

The Religion of Humanity, the Universal Path, the Welfare of All, Reconciliation,
the Integral Vision - these five mantras should become view of the Future. In other
words, what we want henceforth is not this religion or that religion, but the Religion of
Humanity; not this path or that path, but the Universal Path; not the well-being of this
individual or that individual, but the Welfare of All; not turning away and breaking off
from one another, but reconciling and uniting in concord and harmony; and above all, not
the partial view of a narrow creed, not the dual outlook of the material and the spiritual,
but the Integral Vision of seeing all things with the eye of the Divine.

Kuvempu

Second Semester M. Sc. Computer Science

Module 1 Introduction to Database Systems and ER
Model

Unit-1 Overview of DBMS 1-10

Unit - 2 Structure of DBMS 11 -21

Unit—-3 Conceptual Data models for Database Design 22-35

Unit-4 Entity Relationship Model 36 - 45

Module 2 Relational Model and SQL Programming

Unit-5 Relational model Concepts 46 - 55
Unit-6 Relational Algebra 56 -71
Unit-7 Introduction to SQL 72 -91
Unit-8 Modifications and Constraints Specification 92 - 105

A

Module 3 Database Design

Unit-9 Relational Database Design 106 - 113
Unif - 10 ' Axiomatization of Functional Dependencies 114 - 126
Unit-11 Normalization 121 - 129
Unit-12 Algorithms for Relational Database Scheme Design 130 - 138
Module 4 Concept of Storage and Indexing

Unit-13 Data on External Storage - | S 139 - 150 -
Unit-14 Various Types of Indexing 151 - 165
Unit-15 Index Data Structures, Hash-based indexing 16§ - 1?7-
Unit-16 Tree-based Indexing 178 - 1§4

0

Module 5 Transaction Management and Recovery
Techniques
Unit - 17 Introduction to Transaction Processing 195 - 212
Unit - 18 Concurrent Control 213- 222
Unit - 19 Concurrency Control Mechanisms 223 - 236
Unit - 20. Recovery Mechanisms 237 - 249
Module 6 Case Studies
Unit -21 Introductions to ORACLE 250 - 267
Unit-22 Concurrency Control and Recovery in Oracle 268. - 280
Unit-23 Introduction to DB2 281 - 294
Unit-24 Concurrency Control and Recovery in DB2 295 - 307

M

Course Design and Editorial Commitiee

Prof. K.S.Rangappa
Vice-Chancellor & Chairperson
Karanataka State Open University
Manasagangotr, Mysore - 570 006

Prof. Jagadeesha

Dean (Academic) & Convenor
Karnataka State Open University
Manasagangotri, Mysore- 570 006

Head of the Department - Incharge

Course Co-Ordinator

Prof. Jagadeesha

Chairman, DOS in Commerce
(CS)'l

and Management

Karnataka State Open University
University

Smt. Sumati. R. Gowda
BE(CS & E)., MSc(iT)., MPhil

Lecturer, DOS in Computer Science
Karnataka State Open

Manasagangothri Mysore-570 006 Manasagangothri

Mysore-570 006
Course Writer Module 1 - 6 Units 1-24
Dr. Suresha Smt. L. Hamsaveni
Reader Lecturer

Dos in Computer Science
University of Mysore

Dos in Computer Science
University of Mysore

Manasagangothri Manasagangothri
Mysore-570 006 Mysore-570 006
Publisher

Registrar

Karnataka State Open University
Manasagangotri, Mysore - 6.

Developed by Academic Section, KSOU, Mysore

Karnataka State Open University, 2010

All rights reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the

Karnataka State Open University.

Further information on the Karnataka State Open University Programmes
may obtained from the University’s office at Manasagangotri, Mysore-6

Printed and Published on behalf of Karnataka State Open University.

Mysore-6 by

v

Registrar (Administration)

Preface

This material is prepared to give an overview of Database Management Systems (DBMS)
for the Second Semester course in Computer Science curricula. It is suitable for both hardware
and software-oriented students. To study the design details of database management system and
the various concepts related to DBMS, this material has been prepared. The whole material is
organized into six modules each with four units. Each unit lists out the objectives of study along

with the relevant questions and suggested reading to better understand the concepts.

Module-1: Gives an introduction to Database Management Systems (DBMS). It starts with a
brief history of DBMS. It compares DBMS verses file systems. It describes the overall structure
of DBMS. It also describes the conceptual data models.

Module-2: Introduces the relational model concepts. It describes relational database schemes. It
describes overview of relational algebra. An introduction to query language SQL is also given.

Module-3: Describes the database design theory. Functional dependencies and axioms on them
discussed. Normal forms are introduced as a tool for better database design. Algorithms for

relational database scheme design are given.

Module-4: Introduces-the concept of storage and indexing. File organizations are explained. It
covers primary, clustered and secondary indexes. Hash-based indexing is also discussed. It also

describes tree-based indexing. At the end, comparisons of file organizations is given.

Module-5: Introduces the transaction management and recovery. The ACID properties are
explained. Various types of schedules are covered. The motivation for concurrent execution and
anomalies due to them covered. Concept of serializability is explained. Currency control

schemes and ARIES recovery mechanisms are discussed.

Module-6: introduces Oracle and DB2. In both Oracle and DB2 database design and query tools
are explained. SQL variations, storage and indexing, query processing and optimization are
covered. Concurrency control and recovery, system architectures and database administrations

tools are explained.

We thank everyone who helped us directly or indirectly in preparing this material.
Without their support, this material would not have been a reality.

Dr. Suresha
Smt. L. Hamsaveni

U

UNIT 1: OVERVIEW OF DBMS

Structure:

1.0 Objectives

1.1 Introduction

1.2 Definition

1.3 A historical perspective;

1.4 Comparing conventional file systems with DBMS
1.5 Advantages of DBMS

1.6 Levels of abstraction in a DBMS

1.7 Summary

1.8 Keywords

1.9 Unit-end exercises and answers

1.10 Suggested readings

1.0 OBJECTIVES

At the end of this unit you will be able to:

e Discuss history behind DBMS
e Explain the problems with conventional file systems
e State the advantages of DBMS

e (Conceive the levels of abstraction

1.1 INTRODUCTION

This unit is about the need for a Database Management Systems (DBMS). It starts with
definition of DBMS. It gives a brief history of DBMS. It compares DBMS with
conventional file systems provided by operating systems. It describes problems with
conventional file systems. It also gives the advantages of DBMS. At end you understand
the levels of abstraction in a DBMS.

21

1.2. DEFINITION

A database is collection of interrelated data of an enterprise. Where as a Database
Management System (DBMS) is a set of computer programs (a software) that controls
the creation, maintenance, and the use of one or more database. DBMS is designed to
assist in the collection and maintenance of utility data in large numbers. It is a system
that makes information available when required. It allows different user application

programs to easily access the same database

In large systems, a DBMS allows users and other software to store and retrieve data in a
structured way. Instead of having to write computer programs to extract information, user
can ask simple questions in a query language. Thus, many DBMS packages provide
Fourth-generation programming language (4GLs) and other application development
features. It helps to specify the logical organization for a database and access and use the
information within a database. It provides facilities for enforcing data integrity,
controlling data access, restoring the database from backups and managing concurrency.
A DBMS also provides the ability to present database information to users in a more

meaningful way.

1.3 HISTORY OF DBMS

First-generation DBMS designed by Charles Bachman in the company General Electric
in the early 1960s, referred to as the Data Storage Integrated (Integrated Data Store)
formed the basis for the network data model then by standardization Conference on Data
System Languages (CODASYL). And at the end of 1960, IBM developed management
information system (Information Management System) DBMS. IMS formed from the

data on the representation framework, called the data model hierarchy.

Then in 1970, Edgar Codd (IBM San Jose Research Laboratory, USA), proposed the
model called relational data model. By 1980, the relational data model became the most
dominant. SQL query language was developed for relational database project as part of
IBM's System R. SQL standardization was done at the end of 1980. SQL-92 was adopted

by the American National Standards Institute (ANSI) and International Standards
Organization (ISO).

At the end of 1980 and beginning of 1990, many areas of the database systems
developed. Some vendors extended the system with the ability to store new data types

such as image and text, and ability of complex queries.

System-specific / special databases developed by many vendors to create a data
warehouse, consolidate data from multiple base data. Furthermore, the DBMS enter the
internet. At the time of the first generation of Web site store data exclusively in the file
system operation, the current DBMS can be used to store data that can be accessed
through a Web browser. Query degenerate can form via the Web, and format the response

using the markup language such as HTML for easier viewing in a browser.

The importance of online data is increasing. Current areas such as this realized in the
database multimedia, interactive video, digital libraries, the project scientists, such as

project mapping, earth observation system project NASA property, etc.

14 FILE SYSTEM VERSUS A DBMS

A file is facility provided by the operating systems, to store, retrieve and update some
data. Files are stored in specific locations on the hard disk (directories). The user can
create new files to place data in, delete a file that contains data, rename the file, etc., all

known as file management.

If the user wishes to perform some operation on the data he has placed in the file, such as
viewing a list of his clients that celebrate their birthday in May, he has to scroll through
all the data by himself in order to see the data he is interested in. Moreover, he has to
know where he has put the files that contain the data, and if there are multiple files he has

to remember to go through each one of them.

A Database Management System is intended to remove this burden of manually locating
data, and having to scroll through it by allowing the user to create a logical structure for
the data beforehand, and then allowing the user to place the data in the database that the
DBMS is managing. In this way the DBMS abstracts away the physical concerns of
organizing files, and provides the user with a logical view of the data. Note, that the
DBMS will still (behind the scenes) place the data in files on the hard-disk.

DBMS may be multi-user and provides better utilization of resources compared to file

management systems.

If we keep the organizational information in a conventional file processing system, then it

has a number of disadvantages: Namely,
Difficulty in accessing the data:

File processing system provides a customized solution. In file processing system, we
need to define the data-structures and write programs to access, manipulate, and maintain

the data stored in files for each application.

DBMS provides a generic solution. We just need to logically define the structure of data
to be stored. All the programs to access, manipulate, and maintain the data are provided
by the DBMS.

Lack of data independence:
File processing system provides a specific solution to a particular problem for which it is

implemented. For example, an employee information system cannot cater the library even

if the same employees go to the library to borrow books.

In DBMS, there is no connection between the user/programmer with the data storage.
Both the user and the programmer need not worry about how data is stored or accessed.
They have to use the interfaces/libraries provided by DBMS to access the data. So, the
data is portable and a single source of data can serve several users around a variety of

applications.

Inconsistency in data:

In a file processing system, the data files are not protected fully, so they can be changed
with out restrictions. Any one who is able to use the program to handle the data files can
change anything on the data file so there is every possibility of data becoming

inconsistent due to improper handling.

For example, a non-existing employee having borrowed books from library is classic

example of inconsistency in data in a file processing system.

Data redundancy:

In a file processing system the process of getting inter-related is difficult, so mostly data
is duplicated across data-files to ease the data access. Duplicated data is a cause of
inconsistency because data updated at a single place is not available instantly to all the
places where data is duplicated. DBMS tries to minimize or remove this data duplication

by having references to the data, where it is stored.
Absence of constraints:
In a file processing systems all the programs accessing the data are independent, so

having control over data access is a problem. DBMS have the ability to enforce

constraints and also change them without affecting the programs in any way.

Flexibility:

The file processing system is a customized solution. It cannot be adopted for another
problem or can be marketed. For each and every query, we have to write a program. It is
a difficult task. There is very less re-use of code, since the code is tightly bound with
data.

Integrity problems:

In a file processing system all the programs accessing the data are independent, so
controlling the access of data is a very big problem. There are absolutely no constraints at
the file level. Any constraints required need to written as a program and which is very
complex. The DBMS have the ability not only to enforce constraints but also change
them without affecting the program in any way.

Atomicity:

In a file processing system, there is no way to ensure the completion a transaction. Any
partial transaction may lead to illegal data being inserted into data-files. For example,
when we transfer an amount from one account to another account, if the transaction fails
after with-drawl from one account and before deposit to another account results in illegal
transaction. DBMS ensures multiple operations to be treated as one operation, so any
transaction is carried out atomically, without having any partial execution effect on the

database.
Concurrent access anomalies:
When many users want to update a single record at a time, this leads to concurrent access

anomalies. Only the last successful update is stored. DBMS solves this problem by

implementing concurrency control algorithms.

Security problems:

The security in a file processing system is limited. It provides security at course grain.

Either the entire file can be made accessible or not to a user. A part of the data cannot be

exposed while restrictions are provided for other parts of data.

1.5

ADVANTAGES OF DBMS

There are many advantages of DBMS. The important ones are:

Greater flexibility

Greater processing power

Fits the needs of many medium to large-sized organizations
Storage for all relevant data

Provides user views relevant to tasks

Ensures data integrity by managing transactions (ACID test = atomicity,
consistency, isolation, durability)

Supports simultaneous access

Enforces design criteria in relation to data format and structure
Provides backup and recovery

Advanced security

The goals of a DBMS

There are many goals of DBMS. They are:

Data storage, retrieval, and update (while hiding the internal physical
implementation details) ‘

A user-accessible catalog

Transaction support

Concurrency control services (multi-user update functionality)

Recovery services (damaged database must be returned to a consistent state)

e Authorization services (security)
» Support for data integrity services (i.e. constraints)
» Services to promote data independence

» Utility services (i.e. importing, monitoring, performance, record deletion, etc.)

The components to facilitate the goals of a DBMS may include the following:

¢ Query processor

¢ Data Manipulation Language preprocessor

¢ Database manager (software components to include authorization control,
command processor, integrity checker, query optimizer, transaction manager,
scheduier, recovery manager, and buffer manager)

¢ Data Definition Language compiler

¢ File manager

e Catalog manager

1.6. LEVELS OF ABSTRACTIONS IN A DBMS

The major purpose of a database system is to provide users with an abstract view of the
system. The system hides certain details of how data is stored and created and

maintained. The complexity is hidden from database users.

There are three levels of data abstraction: namely

1. Physical level: It deals with how the data is stored physically and where it is
stored in database. This is the lowest level of abstraction.

2. Logical level: It describes what information or data is stored in the database (like
what is the data type or what is the format of data? or the relationships among
data).

3. View level: Describes part of the database for a particular group of users. End
users work on view level. There can be different views of a database. This is the

highest level of abstraction.

Figure 1.1 illustrates the three levels.

| wiew] view 2 « e o viewn
F
concepiual : ’
Jevel
plrvxical
level

Figure 1.1: The three levels of data abstraction

1.7 SUMMARY

A database is collection of interrelated data of an enterprise. Where as a Database
Management System (DBMS) is a set of computer programs (a software) that controls
the creation, maintenance, and the use of one or more database. In this unit, we
considered the historical perspective of DBMS. We also discussed the problems with
conventional file processing compared to DBMS. We ended with levels of data

abstraction.

1.8 KEYWORDS

Database: A database is collection of interrelated data of an enterprise

DBMS: DBMS stands for Database Management System, is a set of computer
programs.

4GL: It stands for Fourth-generation programming language.

File: A file is facility provided by the operating systems, to store, retrieve and update
some data.

ACID: A transaction has to satisfy the ACID property, which stands for atomicity,
consistency, isolation, durability.
Abstraction: hiding certain details of how data is stored and created and maintained.

1.9 UNIT-END EXERCISES AND ANSWERS

5 Give an historical perspective of DBMS
2. Compare DBMS with conventional file processing
 f What are the advantages of DBMS?

4. What are the goals of DBMS?

- Discuss levels of abstraction
Answers: SEE

;8 i

2. 14

. 3 1.5

4. 15

= 2 1.6

1.1& SUGGESTED READINGS

¢ Fundamentals of Database Systems
By Ramez Elmasri, Shamkant B. Navathe, Durvasula V.L.N. Somayajulu,
Shyam K.Gupta
¢ Database System Concepts
By Avi Silberschatz, Henry F. Korth , S. Sudarshan
e Database Management Systems
By Raghu Ramakrishnan and Johannes Gehrke

10

eI T

UNIT 2: STRUCTURE OF DBMS

Structure:

2.0 Objectives

2.1 Introduction

2.2 Data Independence

2.3 Structure of DBMS

24 People who deal with databases
2.5 DBMS Architecture

2,6 Summary

2.7 Key words

2.8 Unit-end exercise and answers
29 Suggested readings

2.0 OBJECTIVES

At the end of this unit you will be able to:

Explain Data Independence

State the Structure of DBMS

Elucidate the people who deal with databases
Discuss the DBMS Architecture

11

2.1 INTRODUCTION

This unit is about structure of DBMS. It starts with Data Independence, where we study
the importance of data independence and types of data independence. It gives a detailed
structure of DBMS. It also describes various people who deal with databases.

2.2 DATA INDEPENDENCE

Separation of data from processing, either so that changes in the size or format of the data
elements require no change in the computer programs processing them or so that these

changes can be made automatically by the database management system.

These are the techniques that allow data to be changed without affeéting the éi:oplications
that process it. There are two kinds of data independence. The first type is data
independence for data, which is accomplished in a database management system
(DBMS). It allows the database to be structurally changed without affecting most existing
programs. Programs access data in a DBMS by field aﬁd are cohcemed with only the data
fields they use, not the format of the complete record. Thus, whén the recorc{ iayout is
updated (fields added, deleted or changed in size), the only programs that must be

changed are those that use those new fields.

12

Data independent

i 95

Figure: 2.1 Data Independence
Program numberl uses a hard-coded value to test credit limit. To change the limit, the
program must be recompiled. Program number 2 retrieves the credit limit from a
database. To change it, only the database must be updated, which is a simpler task. This
is illustrated in Figure 2.1.
Data Independence Types
Data independence is the type of data transparency that matters for a centralized DBMS.
It refers to the immunity of user applications to make changes in the definition and
organization of data.

Data independence has two types:

1L Physical Independence and
y 2 Logical, Independence.

13

The term data independence can be explained as follows: Each higher level of the data

architecture is immune to changes of the next lower level of the architecture.

Physical Independence: The ability to change the physical schema without changing the
logical schema is called physical data independence. For example, a change to the
internal schema, such as using different file organization or storage structures, storage
devices, or indexing strategy, should be possible without having to change the conceptual

or external schemas.

The logical scheme stays unchanged even though the storage space or type of some data
is changed for reasons of optimization or reorganization. Physical data independence
deals with hiding the details of the storage structure from user applications. The
application should not be involved with these issues, since there is no difference in the

operation carried out against the data.

Logical Independence: The ability to change the logical (conceptual) schema without
changing the External schema (User View) is called logical data independence. For
example, the addition or removal of new entities, attributes, or relationships to the
conceptual schema should be possible without having to change existing external

schemas or having to rewrite existing application programs.

The data independence and operation independence together gives the feature of data
abstraction

23 STRUCTURE OF DBMS

The overall structure of DBMS looks as shown in the Figure 2.2.

14

Applications End User DDL

4 3 F

N T e I -------------------------------- .
: } |
1 I
i | DML C i DDL i
; D RS Compiler E
E B Query Optimizer 7 !
] I
' M I :
] I
]]
! S ~ Stored Data Manager ¢ '
]
i L 3 1 :
Py iy g g PSR S U S, PRGN [—— -l

— . .

Data Compiled Data

Files DML Dictionary

Figure 2.2: The overall structure of DBMS

24 PEOPLE WHO DEAL WITH DATABASES

People who deal with databases are called database users, differentiated by the way they

interact with the system. There are four types of database users.

They are Naive users, Applications programmers, Sophisticated users, and Specialized

Users.

Naive users: The unsophisticated user who interact with the system by invoking the

application programs that have been written previously.

Applications programmers: They are the computer professionals who write application

programs.

15

Sophisticated users: The users who can interact with the system without writing

programs, by submitting queries directly.

Specialized users: The specialized users who write specialized database applications that
do not fit into the traditional data-processing framework.

Database Administrator (DBA):

A person having central control over the database is called Database Administrator
(DBA). Here the control refers to control over both the data and the programs that access
those data. DBA is responsible for the design, implementation, maintenance and repair of

an organization's database.
The DBA has the following roles:

Granting of authorization for data access:

Maintaining database and ensuring its availability to users
Schema definition:

Storage structure and access-method definition:

Schema and physical-organization modifications
Controlling privileges and permissions to database users
Monitoring database performance A

Transferring Data

oSN R e N =

Replicating Data
10. Database backup and recovery
11. Database security

DBA coordinates all the activities of the database system and has a good understanding

of the enterprise’s information resources and needs.

16

2.5 DBMS ARCHITECTURE

All DBMS do not conform to the same architecture.

e The three-level architecture forms the basis of modern database architectures.

e This is in agreement with the ANSI/SPARC study group on Database
Management Systems.

e ANSI/SPARC is the American National Standards Institute/Standard Planning
and Requirement Committee).

¢ The architecture for DBMSs is divided into three general levels:

e External

e Conceptual

e [Internal

External View :
(Individual user view)

Conceptual Level
(community user view)

Internal Level
(Storage view)

Figure 2.3: Three level architecture

17

1. The external level : concerned with the way individual users see the data

2. The conceptual level: can be regarded as a community user view a formal
description of data of interest to the organization, independent of any storage
considerations.

3. The internal level : concerned with the way in which the data is actually stored

External View

A user is anyone who needs to access some portion of the data. They may range from
application programmers to casual users with ad-hoc queries. Each user has a language at
his/her disposal.

The application programmer may use a high level language (e.g. COBOL) while the
casual user will probably use a query language.

Regardless of the language used, it will include a data sublanguage DSL which is that
subset of the language which is concerned with storage and retrieval of information in the

database and may or may not be apparent to the user.

A DSL is a combination of two languages:
e A data definition language (DDL) - provides for the definition or description of
database objects
* A data manipulation language (DML) - supports the manipulation or processing
of database objects. '

Each user sees the data in terms of an external view: Defined by an external schema,
consisting basically of descriptions of each of the various types of external record in that
external view, and also a definition of the mapping between the external schema and the

underlying conceptual schema.

18

Conceptual View

An abstract representation of the entire information content of the database.

It is in general a view of the data as it actually is, that is, it is a “model' of the
“realworld'.

It consists of multiple occurrences of multiple types of conceptual record, defined
in the conceptual schema.

To achieve data independence, the definitions of conceptual records must involve
information content only.

Storage structure is ignored

Access strategy is ignored

In addition to definitions, the conceptual schema contains authorization and
validation procedures.

Internal View

The internal view is a low-level representation of the entire database consisting of

multiple occurrences of multiple types of internal (stored) records. It is however at one

remove from the physical level since it does not deal in terms of physical records or

blocks nor with any device specific constraints such as cylinder or track sizes. Details of

mapping to physical storage are highly implementation specific and are not expressed in

the three-level architecture.

The internal view described by the internal schema:

Defines the various types of stored record

What indices exist

How stored fields are represented

What physical sequence the stored records are in

In effect the internal schema is the storage structure definition.

19

2.6 SUMMARY

In this unit, we have discussed about data independence, structure of DBMS. We also
described various people who deal with DBMS. At the end we have given architecture of
DBMS.

277 KEYWORDS

Data independence: It refers to the immunity of user applications to make changes in the

definition and organization of data.

Physical Independence: The ability to change the physical schema without changing the

logical schema is called physical data independence

Logical Independence: The ability to change the logical (conceptual) schema without
changing the External schema (User View) is called logical data independence.

Database Administrator (DBA): A person having central control over the database.

2.8 UNIT-END EXERUiSES AND ANSWERS

1. What is data independence? Explain different types data independence.
2. Give overall structure of DBMS.

3 Who are people, who deal with DBMS?

4, What are the roles of DBA?

n

Explain the three-level architecture of DBMS.

20

Answers: SEE

1. 2.2
2 2.3
3 24
4, 24
5 3

28 SUGGESTED READINGS

e Fundamentals of Database Systems
By Ramez Elmasri, Shamkant B. Navathe, Durvasula V.L.N. Somayajulu,
Shyam K.Gupta
e Database System Concepts
By Avi Silberschatz, Henry F. Korth , S. Sudarshan
e Database Management Systems
By Raghu Ramakrishnan and Johannes Gehrke

21

UNIT 3: CONCEPTUAL DATA MODELS FOR DATABASE DESIGN

Structure:

3.0 Objectives

3.1 Introduction

3.2 Data Models

3.3 Anexample database application
3.4 Some related terms

3.5 Relationships, Roles and Structural constraints.
3.6 Summary

3.7 Keywords

3.8 Unit-end exercises and answers
3.9 Suggested readings

3.0 OBJECTIVES

At the end of this unit you will be able to

Discuss the Data models for database design

Elucidate An example database application

Explain Some related terms

Differentiate the Relationships, Roles and Structural constraints

31

INTRODUCTION

This unit is about data models and some related terminologies. Data modeling in software
engineering is the process of creating a data model by applying formal data model
descriptions using data modeling techniques. Data modeling is a method used to define
and analyze data requirements needed to support the business processes of an

organization. The data requirements are recorded as a conceptual data model with

associated data definitions.

22

32 DATA MODELS

A data model is a collection of conceptual tools for describing data, data relationships,
data semantics, and consistency constraints. It is concept underlying the structure of a
database. All the data models that have been proposed can be grouped into three groups,
namely: object-based logical models, record-based logical data models and physical data
models

Use data modeling:
e to manage data as a resource;
e for the integration of information systems;

o for designing databases/data warehouses (aka data repositories)

Object-Based Logical Models:

Object-based logical models are used in describing data at the conceptual and view
levels. They are characterized by the facts that they provide fairly flexible structuring
capabilities and allow data consistency to be specified explicitly. A more widely used
object-based model is the entity-relationship model. The entity-relationship model is

based on a perception of a real world.

Record-Based Logical Models:
Record-based logical models are also used in describing data at the conceptual and view
levels. In the record-based logical models, the database is structured in fixed format

records of several types. In the record-based logical models, the three most widely

accepted models are the relational, network and hierarchical models.

Physical Data Models:
The physical data models are used to describe data at the lowest level. Among a very few
physical data models, unifying and frame memory are widely known. Physical data

models represent the design of data while also taking into account both the constraints

23

and facilities of a particular database management system. Generally, it is taken from a
logical data model. Although it can also be engineered in reverse from a particular

database implementation.

Physical data model represents how the model will be built in the database. A physical
database model shows all table structures, including column name, column data type,
column constraints, primary key, foreign key, and relationships between tables. Features
of a physical data model include:

» Specification of all tables and columns.

¢ Foreign keys are used to identify relationships between tables.

¢ Denormalization may occur based on user requirements.

* Physical considerations may cause the physical data model to be quite different
from the logical data model.

e Physical data model will be different for different RDBMS.

33 ANEXAMPLE DATABASE APPLICATION

A computer database application program is a computer program that interacts with the
database by issuing an appropriate request to the DBMS. Users interact with the database
through a number of application programs, written in some programming language.

Examples of Database Applications:
There are many database applications.
e Purchase from the supermarket
e Purchase using your credit card
¢ Booking a holiday at the travel agents
e Using the local library,
* Property management
e Banking transaction

24

We déscribe COMPANY as an example database application. The Company databasé
kccps' track of a company’s employees, departments and projects. .
1. The company is organised into departments. Each department has a unique narne,
a unique number and a particular employee who manages the department. We
* keep track of the start date when that employee began managing the departmem
“ A department may have several locations.
igR department ‘controls a numbef of projects, each of which has a unique name, a
unique number and a single location. ' '

3. We store each employee’s name, Social Security number, address, salary, sex, and
birth date. An employee is assigned to one depart'rﬁent but may work on several
projects, which are not necessarily controlled by the same department. We keep
track of the number of hours per week that an employee works on each project.
We also keep track of the direct supervisor of each employee.

4, We want to keep track of the dependents of each employee for insurance
purposes. We keep each dependent’s first name, sex, birth date and relationship to

the employee.

 Company DB: initial conceptual design
We can identify four entity types:

1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager and ManagerStartDate. Locations is a multi-valued attribute. Both Name
and Number are (separate) key attributes.

2. An entity type PROJECT with attributes Namc, Number, Location and
ControllingDepartment. Both Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, SSN, Sex, Address, Salary,
BirthDate, Department and Supervisor. It is not clear from the requirements if
Name and Address should be composite or simple attributes.

4. An entity type DEPENDENT with attributes Employee, DependentName, Sex,
BirthDate and Relationship. Omissions

25

We have not yet represented the fact that an employee can work on several projects, or
the number of hours per week that an employee works on each project. This can be
represented as either
¢ A multi-valued composite attribute of EMPLOYEE called WorksOn (with
components Project, Hours) or
* A multi-valued composite attribute of PROJECT called Workers (with
components Employee, Hours).

Preliminary design of entity types

DEPARTMENT
Name, Number, {Locations }, Manager, ManagerStartDate

PROJECT
Name, Number, Location, ControllingDepartment

EMPLOYEE

Name (Fname, MlInit, Lname), SSN, Sex, Address, Salary,
BirthDate, Department, Supervisor, { WorksOn (Project,
Hours)}

DEPENDENT
Employee, DependentName, Sex, BirthDate, Relationship

Company DB: refined conceptual design
We can identify six relationship types:

1. MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT.
EMPLOYEE participation is partial. After questioning the users, we establish that
DEPARTMENT participation is total. The relationship type has an attribute
StartDate.

26

2. WORKS_FOR, a 1:N relationship type between DEPARTMENT and
EMPLOYEE. Both participations are total.

3. CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total. After questioning the users, we establish
that DEPARTMENT participation is partial.

4, SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervisor
role) and EMPLOYEE (in the supervisee role). After questioning the users, both
participations are determined to be partial.

5. WORKS_ON, defined, after consultation with the users, as an M:N relationship'
type between PROJECT and EMPLOYEE with attribute Hours. Both
participations are determined to be total.

34 SOME RELATED TERMS

Now we discuss some related terms.

An attribute: An attribute is a property or characteristic of an object.

An entity: An entity is an object that exists and is distinguishable from other objects by
a specific set of attributes. The existence need not be a material existence.

Entity types: An entity type defines a set of entities that have same attributes. A name
and a list of attributes describe each entity type.

Entity set: An entity set is a set of entities of the same type.

Key: A key is a set attributes that is used to identify records.

Let us consider the following employee-table and department-table as a sample tables for
the purpose of explaining different key concepts.

Employee table with the attributes (columns):

Employee-id

Employee-name

Employee-address

Employee-department-id

Employee-salary

A W A W N e

Employee-social-security-number

27

Department table with the attributes:
1. Department-id
2. Department-name
3. Department-location : RREn Ry

Now we define various keys.

Super Key: A set of attributes (columns) that is used to identify the records (rows)in a
table uniquely is known as Super Key. A table can have many Super Keys

From the above employee table, we can have many super keys. For example:

Employee-id

Employee-id, Employee-name

Employee-id, Employee-name, Employee-address
Employee-id, Employee-department-id
Employee-social-security-number

Employee-social-security-number, Employee-name

All the above are super keys and many more such combinations are possible.

Candidate Key: It can be defined as minimal Super Key or irreducible Super Key. In
other words a set attributes that identifies the records uniquely but none of its proper
subsets can identify the records uniquely.

From the above employee table, we can have the following candidate keys. For example:

Employee-id

Employee-social-security-number

28

WE L~ D08 RO

Note that all the candidate keys are also super keys, but all super keys need not be
necessarily candidate keys.

Primary Key: A Candidate Key that is used by the database designer for unique
identification of each row in a table is known as Primary Key. A Primary Key can consist

of one or more attributes of a table

From the above employee table, we can select any one candidate keys as primary key.

For example: either Employee-id or Employee-social-security-number

Foreign Key: A foreign key is a set of attributes in one base table that points to the
candidate key (generally it is the primary key) of another table. The purpose of the
foreign key is to ensure referential integrity of the data

For example, in the above employee table, Employee-department-id is a foreign key.

Composite Key: If we use multiple attributes to create a Primary Key then that Primary
Key is called Composite Key (also called a Compound Key or Concatenated Key).

For example, in the above employee table, if we can assume that Employee-name and
Employee-address can uniquely identify the Employees in an organization, then
(Employee-name, Employee-address) can be used as a primary key, which is a
composite key.

Alternate Key: Alternate Key can be any of the Candidate Keys except for the Primary
Key.

In the above Employee table, if we choose Employee-name as the primary key, then

Employee-social-security-number is an alternate key.

29

Secondary Key: The attributes that are not even the Super Key but can be still used for
identification of records (not unique) are known as Secondary Key. A secondary key is

made on a field that you would like to be indexed for faster searches. We can have multiple

Secondary Keys per table. The Attributes used for Secondary key are not the ones used for
Super Key i.e. Secondary Key is not even be one of the Super Key.

In the above Employee table, we can choose Employee-department-id as a secondary
key. We can also choose Employee-address as another secondary key.

3.5 RELATIONSHIPS, ROLES AND STRUCTURAL CONSTRAINTS

A relationship: A relationship is an association (combination) among the instance of one

or more entity type.

Role Names: Each entity type in a relationship plays a particular role. The role name
specifies the role that a participating entity type plays in the relationship and explains
what the relationship means. For example, in the relationship between Employee and
Department, the Employee entity type plays the employee role, and the Department entity
type plays the department role. In most cases the role names do not have to be specified,
but in cases where the same entity participates more than once in a relationship type in

different roles, then we have to specify the role.

For example, in the Company schema, each employee has a supervisor. We need to
include the relationship “Supervises”. However a supervisor is also an employee.
Therefore the employee entity type participates twice in the relationship, once as an

employee and once as a supervisor. Therefore we can specify two roles, employee and

supervisor.

30

Supervisee

Employee

Supervisor

Constraints on Relationship Types:

Relationship types have certain constraints that limit the possible combination of entities
that may participate in relationship. An example of a constraint is that if we have the
entities Doctor and Patient, the organization may have a rule that a patient cannot be seen
by more than one doctor. This constraint needs to be described in the schema.

There are two main types of relationship constraints, cardinality ratio, and participation.

Relationship types:
Types of Relationships in RDBMS There are three types of relationships:

1. One to One relationship
2. One to Many (or Many to One) relationship
3. Many to Many relationship.

One to One relationship:

31

In a one-to-one relationship, each record in Table A can have only one matching record

in Table B, and each record in Table B can have only one matching record in Table A

PAKISTAN < » ISLAMABAD
CHINA & » BEUING
ENGLAND <+ —» LONDON

One to Many (or Many to One) relationship:

In a one-to-many relationship, a record in Table A can have many matching records in

Table B, but a record in Table B has only one matching record in Table A

Consider the following relationship between Student and Phone entity. According to the

relationship a student can have any number of phone numbers.

13 LN
Student Phone

Many to Many relationship:

In a many-to-many relationship, a record in Table A can have many matching records in

Table B, and a record in Table B can have many matching records in Table A

32

employee office

employee

office

employee

3.6 SUMMARY

Data modeling in software engineering is the process of creating a data model by
applying formal data model descriptions using data modeling techniques. This unit
introduced data models and some related terminologies. The data requirements are
recorded as a conceptual data model with associated data definitions. We also defined

relationships, roles and structural constraints in this unit.

3.7 KEYWORDS

Data model: A data model is a collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints.

An attribute: An attribute is a property or characteristic of an object.

An entity: An entity is an object that exists and is distinguishable from other objects by

a specific set of attributes. The existence need not be a material existence.

Entity types: An entity type defines a set of entities that have same attributes. A name
and a list of attributes describe each entity type.

Entity set: An entity set is a set of entities of the same type.

33

Key: A key is a set attributes that is used to identify records.

Super Key: A set of attributes (columns) that is used to identify the records (rows) in a
table uniquely is known as Super Key. A table can have many Super Keys

Candidate Key: It can be defined as minimal Super Key or irreducible Super Key. In
other words a set attributes that identifies the records uniquely but none of its proper

subsets can idenﬁfy the records uniquely

Primary Key: A Candidate Key that is used by the database designer for unique
identification of each row in a table is known as Primary Key. A Primary Key can consist

of one or more attributes of a table

Foreign Key: A foreign key is a set of attributes in one base table that points to the
candidate key (generally it is the primary key) of another table. The purpose of the
foreign key is to ensure referential integrity of the data

Relationship: A relationship is an association (combination) among the instance of one

or more entity type.

3.8 UNIT-END EXERCISES AND ANSWERS

What is a data model? Explain different types of data models.
Describe an example database application.

Define Superkey, Candidate key, Primary key, and Foreign key.

et

With diagram, explain constraints on relationship types.

a4

34

Answers: SEE

1 32
2, 3.3
< 34
4, 35

3.9 SUGGESTED READINGS

¢ Fundamentals of Database Systems
By Ramez Elmasri, Shamkant B. Navathe, Durvasula V.L.N. Somayajulu,
Shyam K.Gupta
® Database System Concepts
By Avi Silberschatz, Henry F. Korth , S. Sudarshan
e Database Management Systems
By Raghu Ramakrishnan and Johannes Gehrke
¢ An Introduction to Database Systems
C.J.Date

35

UNIT 4: ENTITY RELATIONSHIP MODEL

Structure;

40 Objectives

4.1 Introduction

42 Entity-liélationship Data Model.
43 Design Issues

44 Problems on ER data modeling.
4.5 Summary

46 Keywords

47 Unit-end exercises and answers
4.8 Suggested readings

40 OBJECTIVES

At the end of this unit you will be able to understand:

e ER Data model
e Design Issues with ER model
e Problems with ER data modeling

41 INTRODUCTION

This unit describes Entity-Relationship (ER) data model, which is used to describe data at
the conceptual and view level. It is based on the perception of the real world. It also deals

with design issues and problems with ER model.

36

42 ENTITY-RELATIONSHIP MODEL

The Entity-Relationship(ER) data model is used to describe data at the conceptual and
view level. It is based on the perception of the real world. It perceives the real world as
consisting of basic objects called entities, and relationship among these objects. It was
developed to facilitate database design. The ER data model is very useful in mapping the
meanings and interactions of real-world enterprises onto enterprises onto a conceptual

schema. This represents the overall logical structure of the database.

The building blocks: entities, relationships, and attributes

The ER data model employs the notion of attributes, entity sets and relationship sets.

An entity is an object that exists and is distinguishable from other objects. For instance,
Rama with UID 890-12-3456 is an entity, as he can be uniquely identified as one
particular person in India. An entity may be concrete (a person or a book, for example)
or abstract (like a holiday or a concept).

An entity set is a set of entities of the same type (e.g., all persons having an account at a
bank). Entity sets need not be disjoint. For example, the entity set employee (all
employees of a bank) and the entity set customer (all customers of the bank) may have

members in common.

An entity is represented by a set of attributes. e.g. name, S.LN., street, city for
“customer” entity. The domain of the attribute is the set of permitted values (e.g. the
telephone number must be seven positive integers). Formally, an attribute is a function
which maps an entity set into a domain. Every entity is described by a set of (attribute,
data value) pairs. There is one pair for each attribute of the entity set. e.g. a particular
customer entity is described by the set {(name, Harris), (S.LN., 890-123-456), (street,
North), (city, Georgetown)}.

37

Symbol Used for representing the above concepts:

© Attributes are represented by ellipses

Entity sets are represented by rectangles

O Relationships among entities are represented by diamonds

Lines are used to link attributes to

Weak entity set

>

Primary key

38

Some example ER diagrams: The Figure 4.1 describes an ER diagram for a bank. The
Figure 4.2 describes an ER diagram for a book shop. Where as Figure gives an ER

diagram for a transport system.

Figure 4.1: ER diagram for bank:

39

Figure 4.2: ER diagram for a book shop:

is garaged ™ . }%is serviced by { .]
has

= (ow L

n\ / Driver

\m is allocated
is situated in | Town |2 assed through

Figure 4.3: ER diagram for a transport system:

Attributes of the transport system:

Bus (reg-no,make,size,deck,no-pass)

Route (route-no,avg-pass)

- Driver (emp-no,name,address,tel-no)

Town (name)
Stage (stage-no)

Garage (name,address)

4.3

DESIGN ISSUES

The followings are the design issues to be considered:

Use of entity sets vs. attributes: Choice mainly depends on the structure of the enterprise
being modeled, and on the semantics associated with the attribute in question.

Use of entity sets vs. rcleitionship sets: Possible guideline is to designate a relationship

set to describe an action that occurs between entities.

Binary versus n -ary relationship sets: Although it is possible to replace any nonbinary (n
-ary, for n > 2) relationship set by a number of distinct binary relationship sets, a n -ary

relationship set shows more clearly that several entities participate in a single

relationship.

Placement of relationship attributes

44

PROBLEMS ON ER MODELING

There are several problems that may arise when designing a conceptual data model.

These are known as connection traps.

+i

"There are two main types of connection traps:
1. Fan traps
2. Chasm traps

Fan traps:

A fan trap occurs when a model represents a relationship between entity types, but the
pathway between certain entity occurrences is ambiguous. It occurs when 1:m

relationships fan out from a single entity.

Department

S [s |y s

-y

Figure 4.4: Fan Trap

A single site contains many departments and employs many staff. However, which staff

work in a particular department?

The fan trap is resolved by restructuring the original ER model to represent the correct

association.

Stafl - Site

g

Figure 4.5: Resolved Fan Trap

42

Chasm traps:

A chasm trap occurs when a model suggests the existence of a relationship between entity

types, but the pathway does not exist between certain entity occurrences. It occurs where

there is a relationship with partial participation, which forms part of the pathway between

entities that are related.
ey £ S -
Bruch | ST o Property
[] #
Figure 4.6: Chasm Trap

A single branch is allocated many staff who oversee the management of
properties for rent. Not all staff oversee property and not all property is managed
by a member of staff.

What properties are available at a branch?

The partial participation of Staff and Property in the oversees relation means that
some properties cannot be associated with a branch office through a member of
staff.

We need to add the missing relationship which is called “has' between the Branch
and the Property entities.

You need to therefore be careful when you remove relationships which you
consider to be redundant.

43

) e
=N i
has

Figure 4.7: Resolved Chasm Trap

45 SUMMARY

In this unit, we have introduced Entity-Relationship (ER) data model, which is used tb
describe data at the conceptual and view level. We also discussed the design issues and
problems with ER model. We studied some example ER diagrams to understand the
conceptual database.

46 KEYWORDS

Entity-Relationship (ER) model: ER model is used to describe data at the conceptual,
which is based on the perception of the real world.

Fan trap: A fan trap occurs when a model represents a relationship between entity types,

but the pathway between certain entity occurrences is ambiguous.

Chasm trap: A chasm trap occurs when a model suggcsts thé exlstence ofa re!étionship
between entity types, but the pathway does not exist between certain entity occurrences.
It occurs where there is a relationship with partial participation, which forms part of the
pathway between entities that are related.

4.7 = UNIT-END EXERCISES AND ANSWERS

¥ Explain various symbols used in ER diagrams.

2, What are design issues with ER diagram? Explain
3. What are problems on ER modeling? Explain

4. Construct an ER diagram for a bank.

Answers: SEE

1; 42

2. 4.3

3. 44

4. 42

4.8 SUGGESTED READINGS

¢ Fundamentals of Database Systems
By Ramez Elmasri, Shamkant B. Navathe, Durvasula V.L.N. Somayajulu,
Shyam K.Gupta
e Database System Concepts
By Avi Silberschatz, Henry F. Korth , S. Sudarshan
o Database Management Systems
By Raghu Ramakrishnan and Johannes Gehrke
® An Introduction to Database Systems
 CJ.Date

45

UNIT 5: RELATIONAL MODEL CONCEPTS

Structure:

5.0 Objectives

5.1 Introduction

5.2 Relational model

5.3 Relational constraints

5.4 Relational Database schema

5.5 Update operations and dealing with constraints violations
5.6 Summary ‘
5.7 Keywords

5.8 Unit-end exercises and answers

59 Suggested readings

5.0 OBJECTIVES

At the end of this unit you will be able to :

Explain Relational model
Elucidate Relational constraints
Discuss Relational Database schema

State Update operations

51

INTRODUCTION

The Relational model was proposed by E.F.Codd in the year 1970. It is relatively

new, compared to older models hierarchical model and network model. The relational

model has become the most common commercial data model. Relations are actually the

mathematical table. This unit introduces relational model concepts.

46

52 RELATIONAL MODEL

The relational database model is the most popular data model. It is very simple and easily
understandable by information systems professionals and end users. Understanding a
relational model is very simple since it is very similar to Entity Relationship Model. In
ER model data is represented as entities similarly here data in represented in the form of
relations that are depicted by use of two-dimensional tables. Also attributes are

represented as columns of the table.

The basic concept in the relational model is that of a relation. In simple language, a
relation is a two-dimensional table. Table can be used to represent some entity
information or some relationship between them. Even the table for an entity information
and table for relationship information are similar in form. Only from the type of
information given in the table can tell if the table is for entity or relationship. The entities
and relationships, which we studied in the ER model, are similar to relations in this
model. In relational model, tables represent all the entities and relationships identified in
ER model. Rows in the table represent records; and columns show the attributes of the

entity. Figure 5.1 shows structure of a relation in a relational model.

Attributes
Data ylem] Data item2 Data jtem3
Recard 1
Record 2
Record 3

Figure 5.1 Structure of a relation in a relational model.

47

Structural Part of Relation

We start with some terminology first.

Relation: a table with columns and rows.

Attribute /field: named column

Tuple: row of relation (a record)

Degree: number of attributes in a relation. If the column/attribute is only one then

relation is of degree one also known as unary. If a relation has two columns then it’s

known as degree 2 also known as binary.

Cardinality: number of rows (tuples) in a relation.

Domain: data type .Set of allowable values for one or more attribute.

Relational Database: collection of normalized relations.

Basic Structure:

A relation is basically a subset of all possible rows of their corresponding domains. In a

general a relation of n attributes must be a subset of:

D] X sz XDn.IXDn

Tables are essentially relations. So, we can use the terms tables and relations

interchangeably.

48

Properties of Relation: S

Each table should have a distinct name.

e Each cell should have one value (atomic value).

e Attribute names should be unique.

e Values of an attribute are from the same domain.

e . Order of attribute has no significance.

¢ Each tuple should be distinct. It means no duplicate rows.

® Order of rows has no significance.

53 RELATIONAL CONSTRAINTS

In Relational model, there are various types of constraints. They are explained below.
Key constraints

Key constraint is implied by the existence of candidate keys. The intension includes a
specification of the attribute(s) consisting of the primary key and specification of the
attribute(s) consisting alternate keys, if any. Each of these specifications implies a
uniqueness constraint (by definition of candidate key). In addition, primary key
specification implies a no-nulls constraint (by integrity rule).

49

%

Referential constraints
Referential constraints are constraints implied by the existence of foreign keys. The
intension includes a specification of all foreign keys in the relation. Each of these
specifications implies a referential constraint (by integrity rule).
Other constraints: Many other constraints are possible in theory.
Examples:
1) salary >= 20000
2) age>20
Participation constraints
If every entity of an entity set is related to some other entity set via a relationship type,

then the participation of the first entity type is total. If only few member of an entity type
is related to some entity type via a relationship type, the participation is partial.

54 RELATIONAL DATABASE SCHEMA

A database schema of a database system is its structure described in a formal language
supported by the database management system (DBMS) and refers to the organization of
data to create a blueprint of how a database will be constructed (divided into database
tables). A relational database schema is the tables, columns and relationships that make

up a relational database.

Schemata are generally stored in a data dictionary. Although a schema is defined in text
database language, the term is often used to refer to a graphical depiction of the database

50

structure. In other words, schema is the structure of the database that defines the objects
in the database.

The Purpose of a Schema: A relational database schema helps us to organize and
understand the structure of a database. This is particularly useful when designing a new
database, modifying an existing database to support more functionality, or building
integration between databases.

The Figure 5.2 shows the relational schema for a teaching department with three entities,

namely teacher, student, and course.

There are two intersection entities in this schema: Student and Course and Teacher and
Course. These handle the two many-to-many relationships: 1) between Student and
Course, and 2) between Teacher and Course. In the first case, a Student may take many
Courses and a Course may be taken by many Students. Similarly, in the second case, a

Teachers may teach many Courses and a Course may be taught by many Teachers.

[Student__|rm— Conrse

Taught

Teacher

Figure 5.2: An example Relational database scheme\

51

535 UPDATE OPERATIONS & DEALING WITH CONSTRAINTS VIOLATIONS

The basic update operations of the relational model are: Insert, Delete, and Update (or
Modify). All integrity constraints specified on the database schema should not be violated
by the update operations. Several update operations may have to be grouped together.

Updates may propagate to cause other updates automatically. This may be necessary to

maintain integrity constraints.
In case of integrity violation, several actions can be taken:

1. Cancel the operation that causes the violation (RESTRICT or REJECT option).

2. Perform the operation but inform the user of the violation

3. Trigger additional updates so the violation is corrected (CASCADE option, SET
NULL option) ‘ P

4. Execute a user-specified error-correction routine
INSERT may violate any of the constraints:

1. Domain constraint: if one of the attribute values provided for the new tuple is not
of the specified attribte domain.

2. Key constraint: if the value of a key attribute in the new tuple already exists in
another tuple in the relation. | o

3. Referential integrity: if a foreign key value in the new tuple references a primary
key value that does not exist in the referenced relation.

4. Entity integrity: if the primary key value is null in the new tuple.
DELETE may violate only referential integrity:

If the primary key value of the tuple being deleted is referenced from other tuples in the
database: Can be remedied by several actions: RESTRICT, CASCADE, SET NULL.

52

1. RESTRICT option: reject the deletion.

2. CASCADE option: propagate deletion by deleting tuples that reference the tuple
that is deleted.

3. SET NULL option: set the foreign keys of the referencing tuples to NULL.

One of the above options must be specified during database design for each foreign key

constraint.

UPDATE may violate domain constraint and NOT NULL constraint on an attribute being
modified.

Any of the other constraints may also be violated, depending on the attribute being
updated:
1. Updating the primary key (PK): Similar to a DELETE followed by an INSERT.
Need to specify similar options to DELETE.
2. Updating a foreign key (FK): May violate referential integrity.
3. Updating an ordinary attribute (neither PK nor FK): Can only violate domain
constraints.

56 SUMMARY

The Relational model was proposed by E.F.Codd in the year 1970. It is relatively new,
compared to older models hierarchical model and network model. The relational model
has become the most common commercial data model. Relations are actually the
mathematical table. This unit introduces has relational model concepts, relational

constraints, relational database schema, and update operations.

5.7 KEYWORDS

A relation: A relations is actually a two-dimensional mathematical table.

53

The relational model: The relational model is a data model, which uses relations (tables)

to represent both entity information and relationship between them.

Attribute: named column.

Tuple: row of relation (a record)

Degree: number of attributes in a relation.

Cardinality: number of rows (tuples) in a relation.

Domain: data type, set of allowable values for one or more attribute.

Relational Database: collection of normalized relations.

5.8 UNIT-END EXERCISES AND ANSWERS

Briefly explain the concepts of relational model
Discuss different types of relational constraints

Explain relational database schema

T

Discuss the constraints violations with update operations

Answers: SEE
4 52
53
54
35

s Wk

54

59

SUGGESTED READINGS

Fundamentals of Database Systems
By Ramez Elmasri, Shamkant B, Navathe, Durvasula V.L.N. Somayajulu,
Shyam K.Gupta

Database System Concepts
By Avi Silberschatz, Henry F. Korth , S. Sudarshan

Database Management Systems
By Raghu Ramakrishnan and Johannes Gehrke

An Introduction to Database Systems
C.J.Date

55

UNIT 6: RELATIONAL ALGEBRA

Structure:

6.0 Objectives

6.1 Introduction

6.2 Fundamental Relational Operations
6.3 Additional Relational Operations
6.4 Examples of Queries in Relational Algebra
6.5 Summary

6.6 Keywords

6.7 Unit-end exercises and answers

6.8 Suggested Readings

6.0 OBJECTIVES

At the end of this unit you will be able to:

Explain Theory of Relational Algebra

Elucidate Fundamental Relational Operations

Discuss Additional Relational Operations

State Expressing Queries in Relational Algebra

6.1

INTRODUCTION

The Relational Algebra: A relational algebra is an algebra defined over relations. The
inputs are relations and the output is also a relation. Similar to normal algebra, except we

use relations as values instead of numbers, and the operations and operators are different.

56

It is not used as a query language in actual DBMS. The relational algebra is a procedural

query language.

6.2

FUNDAMENTAL RELATIONAL OPERATIONS

An operation is fundamental if it cannot be expressed with other operations. The

relational algebra has six fundamental operations:

Select (unary)

Project (unary)

Rename (unary)

Cartesian product (binary)
Union (binary)
Set-difference (binary)

The Relational Operations produce a new relation as a result.

Let us consider the following relations (tables) as an example of a banking database in

our further discussions:

customer relation over the Customer. Scheme. -

deposit relation over the Deposit_Scheme
borrow relation over the Borrow_Scheme
branch_scheme over the Branch_Scheme

client_realtion over the Client_Scheme

customer table:

Customer_name | Custermer_House_number Custermer_Locality | Custermer_City Custermer_State
Shiva 23 Indira Nagar Bangalore Karnataka |
Kaveri 45 Saraswathi Puram Mysore Karnakata

Laloo 13 Gandhi Nagar Patna Bihar

Kumar 56 Balaji Nagar Tirupati Andra Pradesh
Khan 67 Treemurthi Delhi Dehli

Parvathi 23 Indira Nagar Bangalore Karnataka

Asha 47 Netaji Nagar Mysore Karnataka

Ganesh T Thana Mumbai Maharastra

g d

deposit table:

Account_Number Customer_Name Branch_Name Account_Balance
45 Kaveri University 10000
56 Laloo Redfort 1000000
78 Kumar Majestic ' 20000
20 Shiva Palace 30000
20 Parvathi Palace 30000
21 Asha Majestic 22000
borrow table:

Loan_Number Customer_Name Branch_Name Loan_Amount

10 Laloo Saltlake 20000

13 Kumar University 30000

13 Asha University 30000

75 Khan Redfort ' 15000

55 Laloo Majestic 25000

66 Khan University 40000

18 Ganesh University 65000

11 Kuamr Majestic 13000

61 Laloo Redfort 22000

branch table:

Branch_Name Branch_City Branch_Locality Assets
Saltlake Kolkata Subhas Nagar 12000000
Redfort Delhi Puranadelhi 30000000
University Mysore Manasagangotri 1150000
Majestic Bangalore Gandhi Nagar 450000000
Palace Mysore Shivarampet 35000000

58

client table:

Customer_Name Banker_Name
Kumar Shiva

Asha Shiva

Laloo Kaveri

Khan Shiva

Asha Rama

Laloo Rama

Select Operation (7):

Select is denoted by a lowercase Greek sigma (o), with the predicate appearing as a
subscript. The argument relation (table) is given in parentheses following the ». Select
operation selects tuples (rows) that satisfy a given predicate from the input table.

For example, let us consider the query:
“select tuples (rows) of the borrow relation where the branch is MAJESTIC”

We can express it as:

OBranch_name = “MAJESTIC” (DOTTOW)

The result of this operation consists of only one tuple as given:

Loan_Number Customer_Name Branch_Name Loan_Amount

55 Laloo Majestic 25000

59

We can allow comparisons using =, #, <, %, >and 2 in the selection predicate.

We can also allow the logical connectives ¥(or) and A(and). For example:

GOBranch_name = “University” A Amount> 30000 (bOl‘I‘OW)

The result of this operation is:

Loan_Number Customer_Name Branch_Name Loan. Amount
66 Khan University 40000
18 Ganesh University 65000

The Project Operation (II):

Projection is denoted by the Greek capital letter pi (II). Project outputs its argument
relation for the specified attributes only. The attributes to be output appéar as éubscripts.

Since a relation is a set, duplicate rows are eliminated.

For example, let us express the query:
“find the names of branches and names of customers who have taken loans”

We can express it as:

1_IBranch_Name, Customer_Name (bOI‘I‘OW)

The output of this operation is:

Branch_Name Customer_Name
Saltlake Laloo
University Kumar
University Asha

Redfort Khan

Majestic Laloo
University Khan

University Ganesh

We can also combine select and project operations as shown below:

IT Customer_Name (oBranch_name = “MAJESTIC” (bOl‘I‘OW))

This results in the displaying of customer names who have taken loans from MAJESTIC

branch.

The output of this operation is:

Customer_Name
Laloo

We can think of select as taking rows of a relation, and project as taking columns of a

relation.

The Cartesian Product Operation (x):

The cartesian product of two relations is denoted by a cross (x). It is a binary operation
and requires two argument relations as input. For two input relations r; and rs, it can be

written as

Iy x Ip

The result of 1 X r3 is a new relation with a tuple for each possible pairing of tuples
from r1 and rz. In order to avoid ambiguity, the attribute names have attached to them the
name of the relation from which they came. If no ambiguity will result, we drop the
relation name. If r1 has m tuples, and rz has Bz tuples, then * = r1 X r3 will have m1nz
tuples. The resulting scheme is the concatenation of the schemes of r1 and rz, with

relation names added as mentioned. To find the clients of banker Rama and the city in

61

which they live, we need information in both client and customer relations. We can get
this by writing

OBanker Name=“Rama” (Cli€Nt x customer)
We want rows where client.Customer_Name = customer.Customer_Name. So we can

write to get just these tuples

Oelient.Customer_Name= customer.Customer_Name (OBanker_Name= “Rama” (client x customer))

Finally, to get just the customer's name and city, we can use a projection as shown:

IT client.Customer_Name, Customer_City (

Oclient.Customer_Name= customer.Customer_Name (OBanker_Name= “Rama” (client x customer)))

The final output of the above query is:

Customer_name Custermer_City
Laloo Patna
Asha Mysore

The Rename Operation (P)

The rename operation solves the problems that occur with naming when performing the

Cartesian product of a relation with itself.

Suppose we want to find the names of all the customers who live with “Shiva” in the

same locality, same city and same state.

We can get the information of Shiva by writing

IT Customer_Locality, Customer_City, Customer_State

(GCustomer_name ="“Shiva” (CUStOIIlCI'))

62

To find other customers with the same information, we need to reference the customer

relation again:
op (customer x
IT Customer_Locality, Customer_City, Customer_State

(GCustomer_name =“Shiva” (CUStOI’I’lCl‘)))

Where P is a selection predicate requiring Customer_Locality, Customer_City, and
Customer_State values to be equal.

The problem is how do we distinguish between the two Locality values, two City values
and two State values appearing in the Cartesian product, as both come from a customer
relation. This leads to an ambiguity. The solution is use the rename operator, denoted by
the Greek letter rho(P).

To rename a relation, the general express is:

P x (T)

to get the relation r under the name of z.

By using this to rename one of the two customer relations we can remove the ambiguity.

H customer.Customer.Name (chst2.Customer_Locality = customer.
Customer_Locality A cust2. Customer_City = customer.Customer.city A cust2.
Customer_State = customer.Customer.State (customer x (IT

Customer_Locality, Customer_City, Customer_State (GCustomer_Name

=shiva” (Pcust2 (customer))))))

63

The output of the above query is:

Customer_name
Shiva
Parvathi

The Union Operation (U)s

The Union operation is a binary operation. This operation is denoted U as in set theory. It
returns the union (set union) of two compatible relations (tables). For a union operation
s to be legal, we require that r and s must have the same number of attributes and of
the same type. To find all customers of the MAJESTIC branch, we must find everyone

who has a loan or an account or both at the branch.

We need both borrow and deposit relations for this. We can express it using union

operator as below:

1_ICustomer_Name: (GBranch_Name =“MAJESTIC” bOI‘[’OW)

J

1—[Customer_Name (GBranch_,Namc =“MAJESTIC” dePSOIt)

The output of the above query is:

Customer_name

Kumar
Laloo

As in all set operations, duplicates if any are eliminated.

The Set Difference Operation (_):

The Set difference operation is a binary operation. It is denoted by the minus sign (). It

returns tuples that are in one relation (first relation), but not in another(second relation).
Thus r — & results in a relation containing tuples that are in r but not in &.

To find customers of the MAJESTIC branch who have an account there but no loan, we

express it as:

HCustomer_Name (GBranch_Name =“MAJESTIC” dePSOIt)

l-ICustomer_Name (GBranch_Name =“MAJESTIC” bOI'I'OW)

The output of the above query is:

Customer_name
Asha

6.3 ADDITIONAL RELATIONAL OPERATIONS

Additional relational operations are those which are defined in terms of the fundamental
operations. They do not add power to the algebra, but are useful to simplify common
queries. The list of additional operations consists of set-intersection, natural join,

division, and assignment operations.

The Set Intersection Operation:
Set intersection is denoted by N and returns a relation that contains tuples that are in both

of its argument relations.

65

It does not add any power as such.

The general format of this operation is:
rMNs=r—(r—s)

To find all customers having both a loan and an account at the REDFORT branch, we can

write it as:
HCustorner_Name (CBranch_Name =“REDFORT” dePSOit)

N

l-[Customer_Namf: (GBranch_Name =“REDFORT” bOl‘I’OW)

The output of the above query is:

Customer_name

Laloo

The Natural Join Operation:
Very often we want to simplify queries on a Cartesian product. For example, “to find all

customers having a loan at the bank and the cities in which they live”, we need borrow

and customer relations:

66

The query expression is:

Hborrow.Customer_Name, customer.Customer_City _

(oborrow.Customer_Name= customer_Customer_Nanme (bOI‘I‘OW

X customer))

Our selection predicate obtains only those tuples pertaining to Customer_name. This type
of operation is very common, so we have the natural join, denoted by a M sign. Natural
join combines a Cartesian product and a selection into one operation. It performs a
selection forcing equality on those attributes that appear in both relation schemes.
Duplicates are removed as in all relation operations. To illustrate this, we can rewrite the

above query as

ITcustomer Name, Customer_city (bOrrow X customer)

The resulting relation is:

Customer_name Custermer_City
Laloo Patna

Kumar Tirupati

Khan Delhi .
Parvathi Bangalore

Asha Mysore

Ganesh Mumbai

Now let us make a more formal definition of natural join. Consider R and § to be sets of
attributes. We can denote attributes appearing in both relations by RN §. We can denote

attributes in either or both relations by RU S. Consider two relations ™(R) and (5),
The natural join of r and &, denoted by r M & is a relation on scheme RUS. Itis a

67

projection onto £U § of a selection on r x & where the predicate requires r.A = 5.4 for
each attribute Ain RN S. Formally,

rMhs= IIRUS(Vr.A;:n.A,_ ArAz=0A, A...Ar.A..:n.A.(" X l))
Where Rﬂ S = {AIIAM .e 'sA!l}_

To find the assets and names of all branches which have depositors living in Bangalore,

we need customer, deposit, and branch relations and we can express the query as:

1—IBranch_Name, assets (UCustomer_city =“Bangalore”

(customer M deposit X branch))

Note that M is associative.

To find all customers who have both an account and a loan at the MAJESTIC branch, we

can express it as:
HCustomer_Name (OBranch_Name =“MAJESTIC”

(borrow X deposit))

This is equivalent to the set intersection version. We can see that there can be several

ways to write a query in the relational algebra. If two relations "{R) and (5) have no
attributes in common, then RNS =0, andr M s =r X 5.

The Division Operation:

Division operation, denoted < is suited to queries that include the phrase ““for all”.

Suppose we want to “find all the customers who have an account at all branches located

in Mysore”.

68

Strategy: think of it as three steps. We can obtain the names of all branches located in
Mysore by:

= IIBra.nch__Name (OBranch_City =“Mysore” (branch))

We can also find all Customer_Name, Branch_Name pairs for which the customer has an

account by

Ip= I-ICustomer_Name, Branch_Name ((deOSit))

Now we need to find all customers who appear in 'z with every branch name in r1.

The divide operation provides exactly those customers:

I-ICustomer__Name, Branch_Name ((deOSit))

1_[Branch_Name (GBranch_City =“Mysore” (branch))

\

Which is simply rs < 1.

Now, we can formally define division operation as: Let r(R) and 5(S) be relations. Let
S C R, The relation r + & is a relation on scheme R— S. A tuple ¢ is in r < & if for

every tuple ¢4 in & there is a tuple tr in r satisfying both of the following:

t. [S] =1t [S]

t:[R-S]=t[R-S§]
These conditions say that the & — § portion of a tuple ¢ is in F + & if and only if there are
tuples with the r — & portion and the § portion in r for every value of the S portion in

relation §. The division operation can be defined in terms of the fundamental operations.
r+&=Mn-g(r)- On-s((In-s(r) x 8) —r)

69

The Assignment Operation

Sometimes it is useful to be able to write a relational algebra expression in parts using a
temporary relation variable. The assignment operation, denoted by «, works like

assignment in a programming language. We could rewrite our division definition as

terap «— ln_s(r)
ternp — O p_s((temp x 8) — r)
Note that no extra relation is added to the database, but the relation variable created can

be used in subsequent expressions. Assignment to a permanent relation would constitute

a modification to the database.

64 EXAMPLES OF QUERIES IN RELATIONAL ALGEBRA

Now we consider some example queries in relational algebra. For these queries, let us
consider an employee relational database with relations:
lives(Persons_Name, House_Number, Street, Locality_Name, Person_City)
works(Person_Name, Company_Name, Salary)
located_in(Company_Name, Company_City)

manages(Person_name, Manager_Name)

1) “Find the Person_Name, Locality_Name of all employees who stay in
Bombay city”.

HBranch_Name, Locality_Name (OPerson_City = “Bomaby” (].iVCS))
2) “Find the name and city of all employees who work for WIPRO”.

1_IPersc)n_Name, Person_City (Glives.Person_Name = works.Person_Name A

Company_Name = WIPRO (lives X WOI‘kS))

70

3) “Find all employees who live on the same street, in the same locality, and in
the same city as their manager”.
IT Customer_Name (Omanagerlives.Street = lives_Street A mangerlives.Locality = lives_Locality A
mangerlives.City = lives_City (I1 lives.Person_name = namanges.Person_Name A

manages.Manager_Nmae = managerlives.Persosn_Name (lives x manages
X (Pmanagerlives(lives)))))

4) “Find all employees who live in the same city as the company they work for”.
IT Customer_Name (OlivesPerson_Name = works Person_Name A works_Company_Name =

located_in.Company_Name A lives.City = located_in.City (lives x works x located_in)

6.5 SUMMARY

A relational algebra is an algebra defined over relations. The inputs are relations and the
output is also a relation. The relational algebra is a procedural query language. In this
unit, we discussed theory of relational algebra, the fundamental operations, and the
additional operation of relational algebra. We also studied how to express some queries in

relational algebra.

6.6 KEYWORDS

Relational algebra: A relational algebra is an algebra defined over relations.
Fundamental operation: An operation is fundamental if it cannot be expressed with
other operations.

Additional operation: An operation is additional if it cannot be expressed with the

fundamental operations

71

6.7 UNIT-END EXERCISES AND ANSWERS

—_—
.

What are the fundamental operations in relational algebra?

»

.Explain select, project, Cartesian product, rename, union, and set difference

operations with examples.

w

What are additional relational operations? Explain.

-

Express some example queries in relational algebra.

Answer: SEE
1 6.2
2 6.2
3 6.3
4 6.4

6.8 SUGGESTED READINGS

e Fundamentals of Database Systems
By Ramez Elmasri, Shamkant B. Navathe, Durvasula V.L.N. Somayajulu,
Shyam K.Gupta
e Database System Concepts
By Avi Silberschatz, Henry F. Korth , S. Sudarshan
e Database Management Systems
By Raghu Ramakrishnan and Johannes Gehrke
e An Introduction to Database Systems
C.J.Date

72

